Synthesis and Stereoselective Reduction of (\pm)-, (+)- and (-)-6-Substituted-6-azabicyclo[3.2.1]octan-3-one

J. Bruce Pitner, ${ }^{a}$ Philip Abraham, ${ }^{a}$ Young J. Joo, ${ }^{a}$ David J. Triggle ${ }^{b}$ and F. Ivy Carroll *,a
${ }^{a}$ Chemistry and Life Sciences, Research Triangle Institute, Research Triangle Park, North Carolina 27709, USA
${ }^{\text {b }}$ Department of Biochemical Pharmacology, School of Pharmacy, State University of New York at Buffalo, Buffalo, New York 14260, USA

Abstract

Starting with 6-oxabicyclo[3.2.1]oct-3-en-7-one 6, a three step, general synthetic route to both racemic and optically active 6-substituted 6-azabicyclo[3.2.1]octan-3-ones has been developed. Opening of the lactone ring of 6 with amines gave amides which were reduced with lithium aluminium hydride to amino alcohols. Allylic oxidation of amino alcohols 8a, 8b, 12 and 13 with manganese dioxide provided the bicyclic ketones 1b, 1c, 14 and 15, respectively, without isolation of the intermediate monocyclic ketones. Methods for stereoselective reduction of the bicyclic ketones to the corresponding 6 -substituted 6 -azabicyclo[3.2.1]ocian- 3α-ols and -3 β-ols have been developed. Displacement of the $R-\alpha$-methylbenzyl chiral auxiliary from the diastereomeric alcohols 16, 17, and 20, 21 by catalytic debenzylation followed by reductive amination provided the optically active 6-methyl-6-azabicyclo[3.2.1]octan-3-ols 1d-1e, respectively. The absolute stereochemistry of all reported optically active compounds has been established by comparison of diastereoisomers 10 and 11 with the $R-(+)$-methylbenzylamine amides derived from optically enriched lactone 6.

We have described the synthesis and biochemical properties of 6-methyl-6-azabicyclo[3.2.1]octan-3 α-ol 2,2-diphenylpropionate (1a, azaprophen), a potent muscarinic antagonist. ${ }^{1}$ In order to investigate the structural requirements of 1a for acting at the muscarinic receptor, it was necessary to develop a convenient synthesis of its precursor, 6-methyl-6-azabicyclo[3.2.1]octan-3one $\mathbf{1 b}$. Although the syntheses of this azabicyclo compound and its 6-benzyl derivative 1 c have been reported, ${ }^{2,3}$ the syntheses were neither concise nor sufficiently versatile for use as general procedures. We now report a facile synthesis of this bicyclic system by a route that can be adapted to provide optical isomers of this ring system. ${ }^{4}$ We also present methods for stereoselective reduction of the 3 -ketone group to the 3α - and 3β-alcohols.

Results and Discussion

Initially, 6-methyl-6-azabicyclo[3.2.1]octan-3-one 1b was prepared by a modification of the procedure reported by Furstoss and co-workers. ${ }^{2}$ The starting point was $3,4,5$-trimethoxybenzoyl chloride 2a which, after conversion to the N-methylamide $\mathbf{2 b}$, could be converted by Birch reduction into 3,5-dimethoxy-1,4-dihydro- N-methylbenzamide 3 . We found that hydrolysis of 3 using toluene- p-sulphonic acid monohydrate in acetone gave the β-methoxy α, β-unsaturated ketone $\mathbf{4 a}$, thus avoiding the preparation of the enol $\mathbf{4 b}$ and its conversion into $\mathbf{4 c}$ as reported. ${ }^{2}$ Reduction of $\mathbf{4 a}$ with lithium aluminium hydride (LAH) gave the amino compound 5. Exposure of 5 to hydrochloric acid followed by aqueous sodium hydrogen carbonate gave the desired azabicyclic ketone $\mathbf{1 b}$. In addition to fewer isolation steps, the major advantage of this procedure over the reported procedure ${ }^{2}$ was that the β-methoxy α, β unsaturated ketone 4a could be prepared directly from 3. Also, its purification and conversion into $\mathbf{1 b}$ was much cleaner and proceeded in higher yield than the β-ethoxy α, β-unsaturated ketone used by Furstoss and co-workers. ${ }^{2}$ Even though these improvements offered a better synthesis of $\mathbf{1 b}$, a simpler, higheryielding, versatile method was needed.

This need led us to investigate the sequence shown in Scheme

1
a; $\mathrm{R}^{\mathbf{1}}=\mathrm{Me}, \mathrm{R}^{2}=(\mathrm{Ph})_{2} \mathrm{O}(\mathrm{Me}) \mathrm{CO}_{2}, \mathrm{R}^{3}=\mathrm{H}$
b; $R^{1}=M e, R^{2}=R^{3}=0$
a; $\mathrm{X}=\mathrm{Cl}$
c; $\mathrm{R}^{1}=\mathrm{PhCH}_{2}, \mathrm{R}^{2}=\mathrm{R}^{3}=0$
d; $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{OH}, \mathrm{R}^{3}=\mathrm{H}$
e; $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{OH}$
; $\mathrm{R}^{\mathbf{1}}=\mathrm{PhCH}_{2}, \mathrm{R}^{2}=\mathrm{OH}, \mathrm{R}^{3}=\mathrm{H}$
g; $\mathbf{R}^{1}=\mathrm{PhCH}_{2}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{OH}$

3

4 a; $\mathrm{R}=\mathrm{Me}$
b; $R=H$
c; $\mathrm{R}=\mathrm{Et}$

1 which starts with the readily available lactone 6-oxabicyclo[3.2.1] oct-3-en-7-one $6 .{ }^{5.6}$ When lactone 6 was treated with a methanolic solution of methylamine at $100^{\circ} \mathrm{C}$, a nearly quantitative yield of the amide 7 a was obtained. LAH reduction of 7a afforded the hydroxy amine 8a. Allylic oxidation of $\mathbf{8 a}$ using activated manganese dioxide in methylene dichloride solution gave the desired azabicyclic ketone $\mathbf{1 b}$ in 78% overall yield from 6. The intermediate 9 a was not detected by TLC or ${ }^{1} \mathrm{H}$ NMR analysis and apparently spontaneously cyclized to $\mathbf{1 b}$.
If benzylamine were used in place of methylamine, 6-benzyl-6azabicyclo[3.2.1] octan-3-one 1c was obtained in 68% overall yield. Similarly, treatment of lactone 6 with $R-(+)-\alpha$-methylbenzylamine gave an 81% yield of a $1: 1$ mixture of 10 and 11 which were readily separated by flash chromatography (see

Scheme 1 All compounds are racemic. Reagents: i, $\mathrm{RNH}_{2}, \mathrm{MeOH}$ or xylene; ii, LAH, $\mathrm{Et}_{2} \mathrm{O}$ or THF; iii, $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Scheme 2). To establish the absolute stereochemistry of diastereoisomers 10 and 11, the precursor racemic lactone 6 was optically enriched by enantioselective enzymatic hydrolysis of the $1 R, 5 R$ isomer with pig liver esterase ${ }^{7-9}$ to give $(1 S, 5 S)-6$ of 82% optical purity. ${ }^{10, *}$ Treatment of this enriched lactone with R-(+)- α-methylbenzylamine gave a 9:1 mixture of $\mathbf{1 1}$ and $\mathbf{1 0}$. This served to establish the absolute stereochemistry of $\mathbf{1 0}$ and $\mathbf{1 1}$ as $1 R, 3 R$ and $1 S, 3 S$, respectively. Subjection of $\mathbf{1 0}$ and 11 to LAH reduction provided the optically active amines $\mathbf{1 2}$ and 13. Oxidation of 12 and 13 with manganese dioxide afforded the azabicycloketones 14 and 15, respectively (see Scheme 2).
The reduction of azabicyclic ketones has received considerable attention. ${ }^{11}$ However, except for our earlier reports, ${ }^{1,4}$ we are unaware of any reduction studies on the 6 -azabicyclo[3.2.1] octan-3-one ring system. Since we were interested in preparing both the 3α-and 3β-alcohols, we undertook a study to investigate possible stereoselective reduction of the ketone of this ring system. The ketone 15 was chosen for study since it was more stable than 1b and 1c and the resulting alcohols 16 and 17 were water-insoluble, stable products that were easily separated by chromatography. The results are summarized in Table 1 and Scheme 3.
The use of platinum catalysts for the reduction of the ketone 15, although reported to be highly selective with some other bicyclic amino ketones, ${ }^{11}$ gave very poor results with 15 . With platinum oxide in methanol, little of the desired alcohols were observed, and the major product was assigned structure 19 on the basis of NMR and mass spectral data analysis. A possible explanation for this result is that the catalyst promoted a ring opening retro-Michael reaction by dative-type binding to the nitrogen to give 18 which was then reduced to 19 .
In a related series of azabicyclic ketones (bicyclic 4piperidones), House and co-workers concluded that the amine nitrogen had little effect on the reduction stereochemistry with either catalytic or hydride methods. ${ }^{12}$ The size of the rings (and thus the steric hindrance) was largely responsible for the observed stereoselectivities. With nearly all the metal hydride reagents we examined, this appeared to be true for the 6 -alkyl6 -azabicyclo[3.2.1] octan-3-one system as well. We found that bulky hydride delivery agents gave an excess of the axial α alcohol, presumably due to a very hindered approach from the bottom face of the molecule, basically a cyclohexanone with two 1,3-diaxial interactions. L-Selectride (lithium tri-sec-butylborohydride) gave the greatest selectivity, a 98:2 ratio of α - to

[^0]β-alcohols (entry 7). Less hindered hydride reagents were, as expected, much less selective. Reduction with sodium cyanoborohydride in acetic acid (entry 11) and catalytic reduction with platinum in acetic acid (entry 3), both methods in which the amine may be assumed to be protonated, provided poor stereoselectivity in accord with the literature reports. ${ }^{11,12}$

The most surprising result was found with low temperature reduction using sodium borohydride in methanol (entry 10). When the crude reaction mixture was quenched with 1 mol dm^{-3} hydrochloric acid above $0^{\circ} \mathrm{C}$, or allowed to remain for more than 12 h at $0^{\circ} \mathrm{C}$ before quenching, a nearly equal proportion of α - to β-isomers was obtained. However, when the reaction mixture was quenched with hydrochloric acid at $-78^{\circ} \mathrm{C}$ after stirring for only 15 min at $-78^{\circ} \mathrm{C}$ in methanol, a high degree of stereoselectivity was obtained for the β-alcohol. One possible explanation for this could be the formation of a tertiary amine-borane complex as the protonated amine reacts with the borohydride ion. \dagger This delivers a hydride to the carbonyl only from the bottom face of the ring to provide the β-alcohol. In support of this, we found that reduction of the N benzyl ketone hydrochloride ($\mathbf{1 c} \cdot \mathbf{H C l}$) with sodium borohydride in methanol at $-78{ }^{\circ} \mathrm{C}$ gave only the β-alcohol 1 g . In addition, intermolecular catalysis of borohydride reductions by trialkylamines has been shown not to occur under neutral conditions. ${ }^{13}$ Moreover, the reaction of metal borohydrides with trialkylamine hydrochlorides is a known method for preparing amine-boranes, ${ }^{14}$ and the reduction of carbonyl groups by amine-boranes is accelerated by aqueous acids. ${ }^{15,16}$

Reduction of the ketone 14 gave results essentially the same as 15. Thus, reduction of $\mathbf{1 4}$ with L-Selectride gave 20, whereas low temperature sodium borohydride reduction gave 21. Similar stereoselectivity was also observed in reductions of the racemic N-methyl and N-benzyl ketones 1b and 1c, respectively. L -Selectride reduction provided the 3α-alcohols $\mathbf{1 d}$ and $\mathbf{1 f}$ and sodium borohydride reduction at $-78^{\circ} \mathrm{C}$ with acid quenching gave the 3β-alcohols le and $\mathbf{1 g}$.

Catalytic debenzylation followed by catalytic reductive amination using paraformaldehyde of 16, 17, 20 and 21 gave the corresponding optically active N -methyl analogs of $1 \mathbf{d}$ and 1 e .

Experimental

Melting points were determined on a Thomas Hoover capillary melting-point apparatus and are uncorrected. Infrared (IR) spectra were recorded on either Perkin-Elmer 267 and 467 spectrophotometers, or a Shimadzu IR-400 spectrophotometer. Proton magnetic resonance spectra were obtained on either a Varian EM390 spectrometer or a Bruker WM250 spectrometer. Chemical shifts are reported in δ values relative to tetramethylsilane and all J values are in Hz . Carbon-13 magnetic resonance spectra were run on the Bruker WM250 instrument using the deuterium resonance of the solvent as an internal lock. High resolution mass spectra were obtained on a VG Analytical ZAB E spectrometer. All optical rotations were determined at the sodium D line using a Rudolph Research Autopol III polarimeter (1 dm cell). HPLC was conducted on a Waters 510 Model automated gradient-controlled instrument. Elemental analyses were carried out by Atlantic Microlab, Inc., Atlanta, GA, and Galbraith Laboratories, Inc., Knoxville, TN.

N -Methyl-(3-oxo-5-methoxycyclohex-4-ene)carboxamide

 4a.-To a stirred solution of compound ${ }^{2} 3(34.0 \mathrm{~g}, 0.173 \mathrm{~mol})$ in\dagger We intend to study this reaction in greater detail and determine the extent to which solvent interactions and other variables influence the stereoselectivity.

Table 1 Reduction of N-(1-phenylethyl) ketone 15

Experiment	Reagent	Conditions	Yield ${ }^{\text {a }}$ (\%)	Ratio ${ }^{\text {b,c }} 16-17 \alpha: \beta$
1	Pto_{2}	$\mathrm{MeOH}, 1 \mathrm{~atm} \mathrm{H}_{2}, 6 \mathrm{~h}$	$\begin{array}{r} 416 \\ 7119 \end{array}$	-
2	10\% Pt/C	40 psi H2, THF, 24 h	$\begin{aligned} & 30 \\ & 2019 \end{aligned}$	29:71
3	10\% Pt/C	$40 \mathrm{psi} \mathrm{H}, \mathrm{AcOH}, 24 \mathrm{~h}$	35	43:57
4	LAH	$0^{\circ} \mathrm{C} \rightarrow$ reflux, THF, 3 h	89	33:67
5	DIBAL-H	$-78^{\circ} \mathrm{C}$, THF, 2 h	95	73:27
6	$\mathrm{NaEt}_{3} \mathrm{BH}$	$-78^{\circ} \mathrm{C}$, THF, 1.25 h	89	96:4
7	L-Selectride	$-78^{\circ} \mathrm{C}, \mathrm{THF}, 2 \mathrm{~h}$	94	98:2
8	NaBH_{4}	reflux, THF, 14 h	93	35:65
9 10	$\mathrm{NaBH}_{4} / \mathrm{CeCl}_{3}$	$0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, MeOH, 3 h	87	14:86
10	NaBH_{4}	$-78{ }^{\circ} \mathrm{C}, \mathrm{MeOH}, 15 \mathrm{~min}^{\text {d }}$	94	2:98
11	NaCNBH_{3}	$\mathrm{rt}, \mathrm{AcOH}, 3 \mathrm{~h}$	75	79:21

${ }^{a}$ All reactions were performed on a $0.2-0.5 \mathrm{mmol}$ scale. The yields reported are isolated yields. ${ }^{b}$ The α and β isomers were separated by flash chromatography. ${ }^{c}$ The structures of the α - and β-alcohols were established by NMR analysis. ${ }^{d}$ The reaction was quenched at $-78{ }^{\circ} \mathrm{C}$ using hydrochloric acid ($1 \mathrm{~mol} \mathrm{dm}^{-3}$).

Scheme 2 Structures with wedged and dotted bonds are optically active. Reagents: i, xylene; ii, LAH, THF; iii, $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
acetone ($325 \mathrm{~cm}^{3}$) and water ($6 \mathrm{~cm}^{3}$) was added toluene-psulphonic acid (70 mg). After 24 h at $25^{\circ} \mathrm{C}$, the mixture was cooled and filtered. The solid was washed with a small amount of chilled acetone and dried to give $\mathbf{4 a}(26.84 \mathrm{~g})$. An additional quantity (0.85 g) of $\mathbf{4 a}$ was obtained from the mother liquor on cooling to give $4 \mathrm{a}(27.69 \mathrm{~g}, 87 \%)$, m.p. $168-170^{\circ} \mathrm{C}$. The analytical sample was recrystallized from MeOH , m.p. 170 $171{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.71(3 \mathrm{H}, \mathrm{d}, \mathrm{NMe}), 3.68(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.33$ ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$) and $6.3(1 \mathrm{H}$, br s, NH) (Found: C, $59.05 ; \mathrm{H}, 7.15$; N, 7.65. $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires $\mathrm{C}, 59.00 ; \mathrm{H}, 7.15 ; \mathrm{N}, 7.65 \%$).

N-Methyl-(3-hydroxycyclohex-4-ene)carboxamide 7a.-A solution of the lactone ${ }^{5,6} 6(5.13 \mathrm{~g}, 0.041 \mathrm{~mol})$ in $\mathrm{MeOH}\left(7 \mathrm{~cm}^{3}\right)$ was placed in a bomb reactor and cooled in a dry ice-acetone bath. Methylamine $(2.6 \mathrm{~g}, 0.083 \mathrm{~mol})$ was added and the reactor sealed. The reaction mixture was heated at $110^{\circ} \mathrm{C}$ in an oil bath for 5 h . The contents of the reactor were removed and the volatiles removed to give pure $7 \mathrm{a}(6.29 \mathrm{~g}, 98 \%)$ as a pale yellow oil; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.75(3 \mathrm{H}, \mathrm{d}, \mathrm{NMe}), 4.26(1 \mathrm{H}, \mathrm{dd}, \mathrm{CHO})$ and $5.70\left(2 \mathrm{H}, \mathrm{s}\right.$, olefinic); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 25.3,27.6(\mathrm{C}-2$ and $\mathrm{C}-3), 34.1$ (C-1), 39.0 (NMe), 65.3 (C-3), 126.0 and 130.6 (C-5 and C-4) and $175.9(\mathrm{C}=\mathrm{O})$.

An analytical sample was prepared by silica gel chromatography using $10 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent (Found: 61.85; $\mathrm{H}, 8.45 ; \mathrm{N}, 8.95 . \mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires $\mathrm{C}, 61.91 ; \mathrm{H}, 8.44 ; \mathrm{N}$, 9.03%).

N -Methyl-(3-hydroxycyclohex-4-enyl)methylamine 8a.-A solution of the carboxamide $7 \mathbf{a}(6.33 \mathrm{~g}, 0.041 \mathrm{~mol})$ in THF (15 cm^{3}) was added to a suspension of $\mathrm{LiAlH}_{4}(3.1 \mathrm{~g}, 0.082 \mathrm{~mol})$ in THF ($100 \mathrm{~cm}^{3}$). After 7 h under reflux, the excess of LiAlH_{4} was decomposed by adding water ($3.1 \mathrm{~cm}^{3}$), aqueous NaOH (3 mol $\mathrm{dm}^{3}, 3.1 \mathrm{~cm}^{3}$) and water ($9.3 \mathrm{~cm}^{3}$) in succession. The precipitate was separated by filtration and washed with THF. The filtrate and the washings were evaporated to dryness to give $8 \mathbf{a}(5.78 \mathrm{~g}$, 100%) as a waxy solid. Trituration with $\mathrm{Et}_{2} \mathrm{O}$ gave crystalline material, m.p. $74.5-75^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 4.18$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{O})$ and $5.74\left(2 \mathrm{H}, \mathrm{s}\right.$, olefinic); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 29.4,31.5$ ($\mathrm{C}-2$ and $\mathrm{C}-6$), 36.2 and $36.3(\mathrm{C}-1$ and NMe$), 57.6\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, 64.7 (C-3), and 127.1 and 131.15 (C-5 and C-4) (Found: C, 67.95 ; $\mathrm{H}, 10.75 ; \mathrm{N}, 9.9 . \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}$ requires $\mathrm{C}, 68.04 ; \mathrm{H}, 10.71 ; \mathrm{N}$, 9.92%).

6-Methyl-6-azabicyclo[3.2.1]octan-3-one 1b.-(a) From 4a.

(1S,3S, 5R)-1d

(1S, 3R,5R)-1e

16

17

Scheme 3 Structures with wedged and dotted bonds are optically active

To a suspension of $\mathrm{LiAlH}_{4}(19 \mathrm{~g}, 0.5 \mathrm{~mol})$ in THF $\left(250 \mathrm{~cm}^{3}\right)$ under an atmosphere of argon, was added a solution of 4 a (28.87 $\mathrm{g}, 0.158 \mathrm{~mol})$ in THF $\left(250 \mathrm{~cm}^{3}\right)$ dropwise. After the addition, the mixture was heated at reflux for 4 h . The reaction mixture was cooled in an ice bath, and the excess of LiAlH_{4} was decomposed by sequential addition of water $\left(20 \mathrm{~cm}^{3}\right), 15 \% \mathrm{NaOH}\left(20 \mathrm{~cm}^{3}\right)$ and water $\left(60 \mathrm{~cm}^{3}\right)$. The white precipitate formed after 30 min was separated by filtration and washed with THF. The filtrate and washings were evaporated to dryness under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was evaporated to dryness to give the amino derivative $5(26.16 \mathrm{~g}, 97 \%)$ as a pale yellow solid.

A solution of $5(3.56 \mathrm{~g}, 0.021 \mathrm{~mol})$ in methanol $\left(50 \mathrm{~cm}^{3}\right)$ containing 5% dry hydrogen chloride was stirred overnight. After the mixture was evaporated to dryness, the residue was treated with aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ until the mixture remained basic $\left(1.5 \mathrm{~cm}^{3}\right)$. The aqueous solution was stirred for 30 min and $\mathrm{CHCl}_{3}\left(100 \mathrm{~cm}^{3}\right)$ was added. The CHCl_{3} solution was separated and evaporated to dryness to give $1 \mathrm{~b}(2.79 \mathrm{~g}, 96 \%)$. The sample was chromatographed on alumina (Activity III), eluting with $1 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\mathbf{1 b}$ as a pale yellow oil
$(1.56 \mathrm{~g}, 54 \%), \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.85(1 \mathrm{H}, \mathrm{d}), 2.11(1 \mathrm{H}, \mathrm{m}), 2.26$ $(1 \mathrm{H}, \mathrm{m}), 2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.65(3 \mathrm{H}, \mathrm{m}), 2.85(1 \mathrm{H}, \mathrm{m})$ and 3.25 $(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 34.5,34.9,40.5,46.9,48.0,59.4,60.0$ and 209.5.

The sample was converted into the HCl salt and recrystallized from $\mathrm{MeOH}-\mathrm{EtOAc}$ to give $\mathbf{1 b} \cdot \mathrm{HCl}$, m.p. $157-158{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.33(1 \mathrm{H}, \mathrm{m}), 2.81(8 \mathrm{H}, \mathrm{m}), 3.27(1 \mathrm{H}, \mathrm{m}), 4.04(1 \mathrm{H}$, m) and $4.22(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ (Found: C, $54.8 ; \mathrm{H}, 8.05 ; \mathrm{N}, 8.0$. $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{ClNO}$ requires $\mathrm{C}, 54.70 ; \mathrm{H}, 8.03 ; \mathrm{N}, 7.97 \%$).
(b) From 8a. A mixture of amine $8 \mathbf{a}(4.27 \mathrm{~g}, 0.03 \mathrm{~mol})$ and activated $\mathrm{MnO}_{2}(21.06 \mathrm{~g}, 0.24 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$ was stirred for 20 h at room temperature. The catalyst was separated by filtration and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate and washings were evaporated to give an oily product which was purified by column chromatography on alumina (Activity III) eluting with $1 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product fractions gave $\mathbf{1 b}$ as a pale yellow oil ($3.37 \mathrm{~g}, 80 \%$): the ${ }^{1} \mathrm{H}$ NMR spectrum was identical with the spectrum of $\mathbf{1 b}$ prepared from $\mathbf{4 a}$.

The sample was converted into the HCl salt and recrystallized from $\mathrm{MeOH}-\mathrm{EtOAc}$ to give $\mathbf{1 b} \cdot \mathrm{HCl}(3.60 \mathrm{~g}, 84 \%$), m.p. $157-$ $158{ }^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ NMR was identical to the spectrum of $1 \mathrm{~b} \cdot \mathrm{HCl}$ prepared from 4a.

N -Benzyl-(3-hydroxycyclohex-4-ene)carboxamide 7b.-A solution of benzylamine $(2.6 \mathrm{~g}, 0.024 \mathrm{~mol})$ and lactone $6(2.0 \mathrm{~g}$, 0.016 mol) in xylene $\left(20 \mathrm{~cm}^{3}\right)$ was heated at reflux for 12 h . When the reaction mixture had cooled to room temperature, the crude product precipitated as a white solid which was collected and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane to give $7 \mathrm{~b}(2.76 \mathrm{~g}, 75 \%)$ as a fluffy white solid, m.p. $128-129{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.85(1 \mathrm{H}$, m), $2.20(4 \mathrm{H}, \mathrm{m}), 2.60(1 \mathrm{H}, \mathrm{m}), 4.23(1 \mathrm{H}, \mathrm{t}, \mathrm{CHOH}), 4.40(2 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{PhCH}_{2}\right) 5.73(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HC}=\mathrm{CH}), 6.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and 7.28 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) (Found: C, 72.55; H, 7.4; N, 6.0. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $\mathrm{C}, 72.20 ; \mathrm{H}, 7.41 ; \mathrm{N}, 6.06 \%$).

6-Benzyl-6-azabicyclo[3.2.1]octan-3-one 1c.-A solution of the amide $7 \mathbf{b}(2.60 \mathrm{~g}, 0.011 \mathrm{~mol})$ in THF $\left(100 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred suspension of LAH ($0.84 \mathrm{~g}, 0.022 \mathrm{~mol}$) in THF ($50 \mathrm{~cm}^{3}$) maintained at 0 to $5^{\circ} \mathrm{C}$. After the addition was complete, the mixture was heated at reflux for 16 h . The reaction was quenched at $0^{\circ} \mathrm{C}$ by successive addition of water $\left(1 \mathrm{~cm}^{3}\right)$, aqueous $\mathrm{NaOH}\left(3 \mathrm{~mol} \mathrm{dm}{ }^{3}, 1 \mathrm{~cm}^{3}\right)$ and water $\left(3 \mathrm{~cm}^{3}\right)$, and stirred at $25^{\circ} \mathrm{C}$ for an additional 45 min . The precipitated salts were removed by filtration and washed with diethyl ether ($3 \times$ $\left.50 \mathrm{~cm}^{3}\right)$. The combined filtrates were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed under reduced pressure to give the crude amine $\mathbf{8 b}$ as a clear oil, TLC (silica, ethyl acetate) $R_{\mathrm{f}} 0.05$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.48(1 \mathrm{H}, \mathrm{m}), 1.78(2 \mathrm{H}, \mathrm{m}), 2.12(4 \mathrm{H}, \mathrm{m}), 2.65$ $(2 \mathrm{H}, \mathrm{m}), 3.78\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.17(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 5.75(2 \mathrm{H}$, br s, $\mathrm{HC}=\mathrm{CH}$) and $7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Activated manganese dioxide $(12.0 \mathrm{~g})$ was added to a solution of amine $\mathbf{8 b}$ (from the above reaction) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(80 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temperature for 2.2 h . The catalyst was removed by filtration through Celite and the solvent was removed by rotary evaporation to give the ketone 1c ($2.19 \mathrm{~g}, 90 \%$ from 7 bb) as white crystals, m.p. $78-79^{\circ} \mathrm{C}$ (lit., ${ }^{3}$ $80-81{ }^{\circ} \mathrm{C}$); TLC (silica, 10% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) $R_{\mathrm{f}} 0.60$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.80(1 \mathrm{H}, \mathrm{d}, J 11.5), 2.10(1 \mathrm{H}, \mathrm{m}), 2.18(1 \mathrm{H}, \mathrm{dd}, J$ $1.5,16.5), 2.45(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.60(2 \mathrm{H}, \mathrm{m}), 2.82(2 \mathrm{H}, \mathrm{m}), 3.34(1 \mathrm{H}$, $\mathrm{br} \mathrm{s}), 3.75\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
(1R,3R)-and(1S,3S)-N-[(R)-1-Phenylethyl]-(3-hydroxycyclo-hex-4-ene)carboxamide 10 and 11.-A mixture of $(\mathrm{R})-(+)-\alpha-$ methylbenzylamine ($37.6 \mathrm{~g}, 0.310 \mathrm{~mol}$) and racemic lactone 6 $(19.3 \mathrm{~g}, 0.16 \mathrm{~mol})$ in xylene $\left(100 \mathrm{~cm}^{3}\right)$ was heated at reflux for 20 h . The reaction mixture was allowed to cool to room temperature and the crude product precipitated as a white solid. This was collected and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane to give 10 and 11 as a mixture (24.1 g) of diastereoisomers. A further quantity (5.7 g) of $\mathbf{1 0}$ and 11 was obtained from the mother liquor (81% total yield).

A sample (11.9 g) of the diastereoisomeric mixture of $\mathbf{1 0}$ and 11 was separated by flash chromatography on 550 g of silica gel using a gradient elution technique (20:1 to $5: 1$ diethyl etherethyl acetate) and the pure fractions were combined. After recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane, 3.86 g of the less polar $1 R, 3 S$ amide 10 and 4.12 g of the more polar $1 R, 3 S$ amide 11 were obtained as fluffy white solids. Analysis by HPLC (ethyl acetate, Dynamax 60 A silica column, $2 \mathrm{~cm}^{3} / \mathrm{min}$ flow rate, 256 nm UV detection) indicated each amide to be of greater than 98% diastereoisomeric purity.

Physical data for 10, m.p. $163-164^{\circ} \mathrm{C}$; TLC (silica, 5:1 ethyl ether-ethyl acetate) $R_{\mathrm{f}} 0.29 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.50(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me})$, $1.78(1 \mathrm{H}, \mathrm{m}), 2.00-2.40(3 \mathrm{H}, \mathrm{m}), 2.55(1 \mathrm{H}, \mathrm{m}), 2.91(1 \mathrm{H}, \mathrm{d}, J 8)$, $4.22(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 5.12(1 \mathrm{H}, \mathrm{q}, \mathrm{NCHMe}), 5.83(2 \mathrm{H}$, br s, $\mathrm{HC}=\mathrm{CH}), 5.92(1 \mathrm{H}, \mathrm{m}, \mathrm{NH})$ and $7.31(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ;[\alpha]_{\mathrm{D}}^{24}+98.0^{\circ}$ (c 1, CHCl_{3}) (Found: $\mathrm{C}, 73.35 ; \mathrm{H}, 7.85 ; \mathrm{N}, 5.75 . \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $\mathrm{C}, 73.44 ; \mathrm{H}, 7.81 ; \mathrm{N}, 5.71 \%$).

Physical data for 11, m.p. $155.5-157^{\circ} \mathrm{C}$; TLC (silica, 5:1 diethyl ether-ethyl acetate) $R_{\mathrm{f}} 0.25 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.49(3 \mathrm{H}, \mathrm{d}$, $J 7, \mathrm{Me}), 1.85(1 \mathrm{H}, \mathrm{m}), 2.12-2.35(3 \mathrm{H}, \mathrm{m}), 2.53(1 \mathrm{H}, \mathrm{m}), 3.00$
$(1 \mathrm{H}, \mathrm{d}, J 8), 4.23(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 5.11(1 \mathrm{H}, \mathrm{q}, \mathrm{NCHMe}), 5.75$ (2 H , br s, $\mathrm{HC}=\mathrm{CH}$), $5.97(1 \mathrm{H}, \mathrm{m}, \mathrm{NH})$ and $7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $[\alpha]_{\mathrm{D}}^{24}+81.6^{\circ}\left(c \quad 1, \mathrm{CHCl}_{3}\right)$ (Found: C, $73.55 ; \mathrm{H}, 7.85 ; \mathrm{N}, 5.7$. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $\mathrm{C}, 73.44 ; \mathrm{H}, 7.81 ; \mathrm{N}, 5.71 \%$).

Determination of Absolute Stereochemistry of 10 and 11.-To a stirred solution of 2000 units of pig liver esterase in phosphate buffer ($\left.0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 80 \mathrm{~cm}^{3}, \mathrm{pH} \mathrm{8}\right)$ at room temperature $\left(23^{\circ} \mathrm{C}\right)$ was added a solution of racemic $6(4.25 \mathrm{~g}, 0.034 \mathrm{~mol})$ in MeOH $\left(5 \mathrm{~cm}^{3}\right)$. The pH was maintained at 8 by adding $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ NaOH . After the addition of approximately $34 \mathrm{~cm}^{3}$ of NaOH (about 25 h), the pH of the reaction was raised to 10 , and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were concentrated and the residue purified by column chromatography on silica gel, eluting with solvent mixture of EtOAc-hexane (1:3) to give $(1 S, 5 S)-6$ [1.85 g, 43.5% or 87% of the $(-)$-isomer $],[\alpha]_{\mathrm{D}}^{23}-164.4^{\circ}(c \quad 2.55$, CHCl_{3}).

A solution of the lactone $(1 S, 5 S) 6(1.24 \mathrm{~g}, 0.01 \mathrm{~mol})$ and (R) -$(+)-\alpha$-methylbenzylamine $(1.33 \mathrm{~g}, 0.011 \mathrm{~mol})$ toluene $\left(10 \mathrm{~cm}^{3}\right)$ was heated to reflux for 8 h . The precipitate obtained upon cooling was separated, washed with light petroleum and dried to give a product which was mainly $11(1.8 \mathrm{~g}, 74 \%)$, m.p. 154 $156^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}+75.8^{\circ}\left(c 0.78, \mathrm{CHCl}_{3}\right)$. HPLC analysis (EtOAchexane, $7: 3$, Dynamax 60 A , silica gel column, $2 \mathrm{~cm}^{3} / \mathrm{min}$ flow rate, 256 nm UV detector) showed the mixture to contain 90% of 11 and 10% of 10 .
(1R,3R)-N-[(R)-1-Phenylethyl]-(3-hydroxycyclohex-4-enyl)methylamine 12.-A solution of amide $10(4.00 \mathrm{~g}, 0.016 \mathrm{~mol})$ in THF ($150 \mathrm{~cm}^{3}$) was added dropwise to a stirred suspension of LAH ($1.24 \mathrm{~g}, 0.033 \mathrm{~mol}$) in THF $\left(80 \mathrm{~cm}^{3}\right)$ maintained at 0 to $5^{\circ} \mathrm{C}$. After the addition was complete, the mixture was heated at reflux for 16 h . The reaction was quenched at $0^{\circ} \mathrm{C}$ by successive addition of water ($1.5 \mathrm{~cm}^{3}$), aqueous $\mathrm{NaOH}\left(3 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 1.5\right.$ cm^{3}) and water ($4.5 \mathrm{~cm}^{3}$). The mixture was stirred for 45 min at room temperature, the precipitated salts were removed by filtration and washed with ethyl ether $\left(3 \times 75 \mathrm{~cm}^{3}\right)$. The combined filtrates were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed under reduced pressure to give the amine 12 (3.81 g , 100%) as a clear oil and of sufficient purity to be used in the next reaction: TLC (silica, ethyl acetate) $R_{\mathrm{f}} 0.10 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.36(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}), 1.46(1 \mathrm{H}, \mathrm{m}), 1.70(1 \mathrm{H}, \mathrm{m}), 1.94(1$ $\mathrm{H}, \mathrm{m}), 2.13(2 \mathrm{H}, \mathrm{m}), 2.51(2 \mathrm{H}, \mathrm{m}), 2.80(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.71(1 \mathrm{H}$, $\mathrm{q}, J 6.5, \mathrm{CHMe}), 4.18(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 5.74(2 \mathrm{H}, \mathrm{m}$, $\mathrm{HC}=\mathrm{CH})$ and $7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

An analytical sample of $\mathbf{1 2} \cdot \mathbf{H C l}$ recrystallized from methanoldiethyl ether had m.p. $176-177^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 67.1 ; \mathrm{H}, 8.3 ; \mathrm{Cl}$, 13.35; $\mathrm{N}, 5.2 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{ClNO}$ requires $\mathrm{C}, 67.28 ; \mathrm{H}, 8.28 ; \mathrm{Cl}, 13.24$; N, 5.23%).
(1S,3S)-N-[(R)-1-Phenylethyl]-(3-hydroxycyclohex-4-enyl)methylamine 13.-A similar procedure provided the diastereoisomeric $1 S, 3 S$ amine 13 from amide 11: TLC (silica, ethyl acetate) $R_{\mathrm{f}} 0.10 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.41(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}), 1.45$ ($1 \mathrm{H}, \mathrm{m}$), $1.82(1 \mathrm{H}, \mathrm{dd}), 1.92(1 \mathrm{H}, \mathrm{m}), 2.06(1 \mathrm{H}, \mathrm{m}), 2.19(1 \mathrm{H}$, m), $2.42(1 \mathrm{H}, \mathrm{dd}), 2.56(1 \mathrm{H}$, dd $), 3.38(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.77(1 \mathrm{H}, \mathrm{q}, J$ $6.5, \mathrm{CHMe}), 4.18(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 5.74(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{CH})$ and 7.31 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

An analytical sample of $13 \cdot \mathrm{HCl}$ recrystallized from MeOH and ether had m.p. $108-110^{\circ} \mathrm{C}$ (Found: C, 66.05 ; H, 8.4; N , 5.1. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{ClNO} \cdot{ }_{4}^{1} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 66.16 ; \mathrm{H}, 8.33 ; \mathrm{N}$, 5.14%).
(1R,5S)-6-[(R)-1-Phenylethyl]-6-azabicyclo[3.2.1]octan-3one 14.-Activated manganese dioxide $(22.0 \mathrm{~g}, 0.25 \mathrm{~mol})$ was added to a stirred solution of $12(3.80 \mathrm{~g}, 0.016 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($100 \mathrm{~cm}^{3}$). After 2 h , the manganese dioxide was removed by
filtration through Celite and the solvent was removed by rotary evaporation to give a light brown oil. After being dried under reduced pressure and set aside overnight in the freezer a waxy solid formed. Recrystallization from diethyl ether-hexane gave $14\left(3.22 \mathrm{~g}, 86 \%\right.$), m.p. $65-66^{\circ} \mathrm{C}$; TLC (silica, 10% methanol in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) R_{\mathrm{f}} 0.63 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1711 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.26$ (3 $\mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}), 1.74(1 \mathrm{H}, \mathrm{d}, J 7.5), 2.05(2 \mathrm{H}, \mathrm{m}), 2.44(3 \mathrm{H}, \mathrm{m})$, $2.62(1 \mathrm{H}, \mathrm{m}), 2.77(2 \mathrm{H}, \mathrm{m}), 3.30(1 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{q}, J 6.5$, CHMe) and 7.24 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $[\alpha]_{\mathrm{D}}^{24}+17.7^{\circ}\left(\right.$ c $\left.1, \mathrm{CHCl}_{3}\right)$ (Found: C, 78.65; H, 8.4; N, 6.15. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{C}, 78.56$; H, 8.35; N, 6.11\%).
(1S,5R)-6-[(R)-1-Phenylethyl]-6-azabicyclo[3.2.1]octan-3one 15.-An analogous procedure provided the ketone 15 (3.12 $\mathrm{g}, 96 \%)$ as a waxy solid from reaction of $13(3.29 \mathrm{~g}, 0.014 \mathrm{~mol})$ and manganese dioxide (26.0 g). An analytical sample was recrystallized from diethyl ether-hexane, m.p. $60-61^{\circ} \mathrm{C}$; TLC (silica, 10% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) $R_{\mathrm{f}} 0.63$; IR (KBr$) / \mathrm{cm}^{-1} 1710$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.31(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}), 1.79(1 \mathrm{H}, \mathrm{d}), 2.04(1 \mathrm{H}, \mathrm{m})$, $2.15(1 \mathrm{H}, \mathrm{d}), 2.43(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.52(3 \mathrm{H}, \mathrm{m}), 2.89(1 \mathrm{H}, \mathrm{dd}), 3.41$ $(1 \mathrm{H}, \mathrm{m}), 3.65(1 \mathrm{H}, \mathrm{q}, J 6.5, \mathrm{CHMe})$ and $7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ;[\alpha]_{\mathrm{D}}^{24}$ $+9.5^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$ (Found: C, 78.65; H, 8.4; N, 6.1. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{C}, 78.56 ; \mathrm{H}, 8.35 ; \mathrm{N}, 6.11 \%$).

Catalytic Hydrogenation of 15.-Reduction of ketone 15 with platinum catalysts (see Table 1) gave varying amounts of 19, TLC (silica, $90: 9: 1, \mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{NH}_{4} \mathrm{OH}$) $R_{\mathrm{f}} 0.39$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.86(2 \mathrm{H}, \mathrm{m}), 1.27(2 \mathrm{H}, \mathrm{m}), 1.31(3 \mathrm{H}, \mathrm{d}, \mathrm{CH} M e)$, $1.58(3 \mathrm{H}, \mathrm{m}), 1.72(2 \mathrm{H}, \mathrm{m}), 1.97(2 \mathrm{H}, \mathrm{m}), 2.36(2 \mathrm{H}, \mathrm{m}), 3.54(1$ $\mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{C} H \mathrm{Me})$ and $7.31(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z$ (EI) 233 ($\mathrm{M}^{+}, 5$), 218 (M - Me, 30), 134 (68), 106 (22) and 105 (100); $v_{\text {max }}($ film, NaCl$) / \mathrm{cm}^{-1} 3345 \mathrm{br}(\mathrm{OH}), 3020,2920,2850$ and 1450 .
A HCl salt of 19 was recrystallized from methanol-diethyl ether, m.p. ${ }^{153-155}{ }^{\circ} \mathrm{C}$ (Found: C, 64.1; H, $9.05 ; \mathrm{Cl}, 12.65 ; \mathrm{N}$, $5.00 . \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClNO} \cdot \frac{2}{3} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 63.93 ; \mathrm{H}, 9.06 ; \mathrm{Cl}, 12.58$; $\mathrm{N}, 4.97 \%$).
(1R,3R,5S)-6-[(R)-1-Phenylethyl]-6-azabicyclo[3.2.1]octan$3 \alpha-$ ol 20 .-The ketone 14 ($3.22 \mathrm{~g}, 0.014 \mathrm{~mol}$) was dissolved in THF ($75 \mathrm{~cm}^{3}$) and cooled to $-78^{\circ} \mathrm{C}$ with stirring. L-Selectride ($21.1 \mathrm{~cm}^{3}$) of a $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF) was added dropwise via a syringe (10 min), and the reaction mixture was stirred for 3 h at $-78^{\circ} \mathrm{C}$, then allowed to warm to $0^{\circ} \mathrm{C}$. The reaction was quenched by addition of $\mathrm{NaOH}\left(3 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ and stirred for 2 h . The mixture was filtered, the filtrate was evaporated and the resulting residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $10 \% \mathrm{NH}_{4} \mathrm{OH}$. The aqueous layer was extracted with three further portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic fractions ($200 \mathrm{~cm}^{3}$) was dried (NaSO_{4}) and the solvent was evaporated to give an oil. During storage in the freezer this solidified to give $20(2.72 \mathrm{~g}, 84 \%)$ as off-white crystals of sufficient purity to be used in the next step. An analytical sample was recrystallized from methanol, m.p. $125-126^{\circ} \mathrm{C}$; TLC ($90: 9: 1 \mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{NH}_{4} \mathrm{OH}$) $R_{\mathrm{f}} 0.75$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.40(3 \mathrm{H}, \mathrm{d}, \mathrm{CHMe}), 1.45(2 \mathrm{H}, \mathrm{m}), 1.75(2 \mathrm{H}, \mathrm{m})$, $1.90(3 \mathrm{H}, \mathrm{m}), 2.65(2 \mathrm{H}, \mathrm{m}), 3.10(1 \mathrm{H}, \mathrm{t}), 3.44(2 \mathrm{H}, \mathrm{m}), 3.90(1 \mathrm{H}$, $\left.\mathrm{m}, W_{\frac{1}{2}} 12 \mathrm{~Hz}, \mathrm{CHOH}\right)$ and $7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ;[\alpha]_{\mathrm{D}}^{23}-4.4^{\circ}(c 0.75$, CHCl_{3}) (Found: C, 77.75; H, 9.2; N, 6.05. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}$ requires C, $77.88 ; \mathrm{H}, 9.15 ; \mathrm{N}, 6.05 \%$).
(1S,3S,5R)-6-[(R)-1-Phenylethyl]-6-azabicyclo[3.2.1]octan3α-ol 16.-A similar procedure yielded $16(2.48 \mathrm{~g}, 98 \%)$ as a waxy yellow solid from $15(2.50 \mathrm{~g}, 0.011 \mathrm{~mol})$. An analytical sample was recrystallized from MeOH -ethyl ether, m.p. $78.5-80{ }^{\circ} \mathrm{C}$; TLC ($90: 9: 1 \mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{NH}_{4} \mathrm{OH}$) $R_{\mathrm{f}} 0.75$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.42(3 \mathrm{H}, \mathrm{d}, \mathrm{CHMe}), 1.43(1 \mathrm{H}, \mathrm{m}), 1.61-2.12(6$ $\mathrm{H}, \mathrm{m}), 2.33(2 \mathrm{H}, \mathrm{m}), 2.91(1 \mathrm{H}, \mathrm{d}, J 9), 3.52(1 \mathrm{H}, \mathrm{t}), 3.59(1 \mathrm{H}$,
q, CHMe), $3.94\left(1 \mathrm{H}, \mathrm{m}, W_{\frac{1}{2}} 10.5 \mathrm{~Hz}, \mathrm{CHOH}\right)$ and $7.27(5 \mathrm{H}$, m, Ph); $[\alpha]_{\mathrm{D}}^{23}+20.3^{\circ}\left(c 0.75, \mathrm{CHCl}_{3}\right.$) (Found: C, 77.7; H, 9.2; $\mathrm{N}, 6.0 . \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}$ requires $\mathrm{C}, 77.88 ; \mathrm{H}, 9.15 ; \mathrm{N}, 6.05 \%$).
(1R,3S,5S)-6-[(R)-1-Phenylethyl]-6-azabicyclo[3.2.1]octan3β-ol 21.-The ketone $14(1.65 \mathrm{~g}, 0.007 \mathrm{~mol})$ was dissolved in methanol ($40 \mathrm{~cm}^{3}$) and cooled with stirring to $-78^{\circ} \mathrm{C}$. An excess of sodium borohydride (1.65 g) was added in three portions, and the mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$. The reaction was quenched at $-78^{\circ} \mathrm{C}$ by dropwise addition of HCl ($1 \mathrm{~mol} \mathrm{dm}^{-3}$) until bubbling ceased. The volume of the mixture was reduced to $c a .5 \mathrm{~cm}^{3}$ by rotary evaporation, and the residue was partitioned between $20 \% \mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was extracted with three further portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined fractions were reduced under reduced pressure to an oil. This was subjected to flash chromatography (silica, 94:5:1 $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{NH}_{4} \mathrm{OH}$) to give $21(1.60 \mathrm{~g}, 96 \%)$ as a clear oil which crystallized during storage. The sample was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum, m.p. $65-68^{\circ} \mathrm{C}$; TLC (90:9:1 $\mathrm{CHCl}_{3}-\mathrm{MeOH}-$ $\left.\mathrm{NH}_{4} \mathrm{OH}\right) R_{\mathrm{f}} 0.45 ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.15(1 \mathrm{H}, \mathrm{t}), 1.32(3 \mathrm{H}$, d, CHMe), $1.45(1 \mathrm{H}, \mathrm{m}), 1.73-2.58(6 \mathrm{H}, \mathrm{m}), 2.72(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.12$ ($1 \mathrm{H}, \mathrm{t}), 3.55(1 \mathrm{H}, \mathrm{q}, \mathrm{CHMe}), 4.15\left(1 \mathrm{H}, \mathrm{m}, W_{\frac{1}{2}} 20 \mathrm{~Hz}, \mathrm{CHOH}\right)$ and $7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ;[\alpha]_{\mathrm{D}}^{23}-15.95\left(c 0.81, \mathrm{CHCl}_{3}\right)$ (Found: M^{+}, 231.1621. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}$ requires $\mathrm{M}^{+}, 231.1623$) (Found: C , 76.5; H, 9.15; N, 5.9. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ requires C , 76.39 ; H, 9.19; N, 5.94\%).
(1S,3R,5R)-N-[(R)-1-Phenylethyl]-6-azabicyclo[3.2.1]octan3β-ol 17.-The diastereoisomer 17 was obtained in a similar manner from reduction of ketone 15 as a clear oil which solidified on trituration with light petroleum, m.p. $120-123^{\circ} \mathrm{C}$; TLC (90:9:1 $\left.\quad \mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{NH}_{4} \mathrm{OH}\right) \quad R_{\mathrm{f}} \quad 0.42 ; \quad \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.16(1 \mathrm{H}, \mathrm{t}), 1.30(2 \mathrm{H}, \mathrm{m}), 1.31(3 \mathrm{H}, \mathrm{d}, \mathrm{CHMe})$, $1.72(2 \mathrm{H}, \mathrm{m}), 1.96(1 \mathrm{H}, \mathrm{m}), 2.04(1 \mathrm{H}, \mathrm{m}), 2.36(1 \mathrm{H}, \mathrm{m}), 2.57$ ($1 \mathrm{H}, \mathrm{d}$), $2.84(1 \mathrm{H}, \mathrm{dd}), 3.22(1 \mathrm{H}, \mathrm{t}), 3.67(1 \mathrm{H}, \mathrm{q}, \mathrm{CHMe}), 4.17$ $\left(1 \mathrm{H}, \mathrm{m}, W_{1} 21, \mathrm{CHOH}\right)$ and $7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ;[\alpha]_{\mathrm{D}}^{23}+5.87(c$ $0.749, \mathrm{CHCl}_{3}$) (Found: $\mathrm{M}^{+}, 231.1625 . \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}$ requires M^{+}, 231.1623) (Found: C, 76.45; H, 9.2; N, 5.95. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO} \cdot 0.25$ $\mathrm{H}_{2} \mathrm{O}$ requires C, $76.39 ; \mathrm{H}, 9.19 ; \mathrm{N}, 5.94 \%$).

(1R,3R,5S)-6-Methyl-6-azabicyclo[3.2.1]octan-3x-ol

[(1R,3R,5S)-1d].-The α-alcohol $20(6.5 \mathrm{~g}, 0.028 \mathrm{~mol})$ and 1.8 g of $10 \% \mathrm{Pd} / \mathrm{C}$ in methanol ($150 \mathrm{~cm}^{3}$) were stirred under a hydrogen atmosphere for 24 h . The catalyst was removed by filtration through Celite and washed with three $100 \mathrm{~cm}^{3}$ portions of methanol. Evaporation of solvent from the filtrate yielded a yellow solid. This solid was dissolved in $200 \mathrm{~cm}^{3}$ of methanol, and paraformaldehyde ($1.5 \mathrm{~g}, 0.05 \mathrm{~mol}$) was added. The mixture was stirred for $10 \mathrm{~min}, 0.5 \mathrm{~g} \mathrm{10} \mathrm{\%} \mathrm{Pd/C} \mathrm{was} \mathrm{added}$ and the suspension was stirred under hydrogen (1 atm) for 6 h . The catalyst was removed by filtration through Celite, the solvent evaporated, and the resulting residue was purified by chromatography (alumina). Elution with CHCl_{3} removed nonpolar impurities. Elution with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{NH}_{4} \mathrm{OH}$ ($40: 9: 1$) gave the 6 -methyl alcohol ($1 R, 3 R, 5 S$) $\mathbf{- 1 d}(3.1 \mathrm{~g}, 79 \%)$ as a clear oil: TLC (silica, 40:9:1 $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{NH}_{4} \mathrm{OH}$) R_{f} $0.05 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.40(1 \mathrm{H}, \mathrm{d}, J 11), 1.51(1 \mathrm{H}, \mathrm{dd}, J 0.7,4.5), 1.78-$ $2.01(4 \mathrm{H}, \mathrm{m}), 2.28-2.40(2 \mathrm{H}, \mathrm{m}), 2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.04(1 \mathrm{H}, \mathrm{t})$, $3.34(1 \mathrm{H}, \mathrm{dd}), 3.89\left(1 \mathrm{H}\right.$, br s, $\left.W_{\frac{1}{2}} 12, \mathrm{CHOH}\right)$ and $5.50-6.50(1$ $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$, concentration dependent) (Found: $\mathrm{M}^{+}, 141.1152$. $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}$ requires $M^{+}, 141.1154$).

(1S,3S,5R)-6-Methyl-6-azabicyclo[3.2.1]octan-3 α-ol

 [$(1 \mathrm{~S}, 3 \mathrm{~S}, 5 \mathrm{R})-\mathbf{1 d}]$.-The enantiomer ($1 S, 3 S, 5 R$)-1d was prepared by the same procedure as $(1 R, 3 R, 5 S)$-1d and possessed identical TLC and NMR properties (Found: $\mathrm{M}^{+}, 141.1152 . \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}$ requires $\left.M^{+}, 141.1154\right)$.(1S,3R,5R)-6-Methyl-6-azabicyclo[3.2.1]octan-3ß-ol [(1S,3R,5R)-1e].-The β-isomer ($1 S, 3 R, 5 R$)-1e was prepared by a procedure similar to that described for $(1 R, 3 R, 5 S)$-1d. Thus, $17(1.65 \mathrm{~g}, 0.007 \mathrm{~mol})$ was hydrogenated with $0.15 \mathrm{~g} \mathrm{Pd} / \mathrm{C}$ for 20 h under 1 atm of hydrogen. After removal of the catalyst, the solution was mixed with paraformaldehyde $(0.75 \mathrm{~g}, 0.025 \mathrm{~mol})$ and $\mathrm{Pd} / \mathrm{C}(0.15 \mathrm{~g})$ and again hydrogenated under 1 atm of H_{2} for 10 h . The catalyst was removed, and the residue, after evaporation of the MeOH , was purified by column chromatography on alumina (Activity III) eluting with a solvent mixture of $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{NH}_{4} \mathrm{OH}(90: 9: 1)$ to give ($1 S, 3 R, 5 R$)-1e $(1.0 \mathrm{~g}, 100 \%)$ as a clear oil: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.22(1 \mathrm{H}, \mathrm{d}, J 10.8)$, $1.32(1 \mathrm{H}, \mathrm{d}, J 11.5), 1.40(1 \mathrm{H}, \mathrm{d}, J 11.0), 1.78(1 \mathrm{H}, \mathrm{m}), 1.97(1 \mathrm{H}$, $\mathrm{m}), 2.18(1 \mathrm{H}, \mathrm{m}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.68(2 \mathrm{H}, \mathrm{m})$, $3.05(1 \mathrm{H}, \mathrm{m}), 3.43(1 \mathrm{H}, \mathrm{m}), 3.98\left(1 \mathrm{H}, \mathrm{m}, W_{\frac{1}{2}} 23 \mathrm{~Hz}, \mathrm{CHOH}\right)$ (Found: $\mathrm{M}^{+}, 141.1152 . \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}$ requires $\mathrm{M}^{+}, 141.1154$).
(1R,3S,5S)-6-Methyl-6-azabicyclo[3.2.1]octan-3ß-ol $[(1 \mathrm{R}, 3 \mathrm{~S}, 5 \mathrm{~S})-1 \mathrm{e}]$. The 6 -methyl β-alcohol ($1 R, 3 S, 5 S$)-1e was prepared from 21 as a clear oil: ${ }^{1} \mathrm{H}$ NMR and TLC were identical with the $(1 S, 3 R, 5 R)-1 \mathrm{e}$ isomer (Found: $\mathrm{M}^{+}, 141.1152$. $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}$ requires $M^{+}, 141.1154$).
(\pm)-6-Methyl-6-azabicyclo[3.2.1]octan-3 $\mathbf{\alpha}$-ol 1d.-The racemic alcohol 1d was obtained by reduction of the 6 -methyl ketone $\mathbf{1 b}$ with L -Selectride, followed by a non-oxidative, nonaqueous work-up. The ketone 1 b ($750 \mathrm{mg}, 0.005 \mathrm{~mol}$) was dissolved in THF ($25 \mathrm{~cm}^{3}$) and cooled to $-78^{\circ} \mathrm{C}$ with stirring. L-Selectride ($8.1 \mathrm{~cm}^{3}$ of a $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF) was added dropwise via a syringe (5 min), and the reaction mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$. The reaction was quenched by addition of aqueous $\mathrm{NaOH}\left(3 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 0.8 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ and allowed to warm slowly to room temperature. After dilution with diethyl ether and filtration through a sintered glass funnel, the filtrate was concentrated by rotary evaporation. The resulting residue was purified by flash chromatography (alumina, Activity III, gradient of $95: 5$ to $80: 20 \mathrm{CHCl}_{3}-\mathrm{MeOH}$ with $0.5 \% \mathrm{NH}_{4} \mathrm{OH}$) to yield the racemic alcohol $1 \mathrm{~d}(651 \mathrm{mg}$, 85%) as an oil. None of the β-alcohol 1e could be detected in the $250 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 1 d .
(\pm)-6-Benzyl-6-azabicyclo[3.2.1]octan-3 α-ol 1f.-The ketone 1c gave the α-alcohol 1 f after reduction with L -Selectride in a manner analogous to preparation of alcohol 1d. Data for α alcohol 1f: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.45(2 \mathrm{H}, \mathrm{m}), 1.98(4 \mathrm{H}, \mathrm{m}), 2.45(2 \mathrm{H}$, $\mathrm{m}), 3.28(2 \mathrm{H}, \mathrm{m}), 3.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.85\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, W_{1} 12 \mathrm{~Hz}\right.$, CHOH), 5.80 (br s, OH) and $7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) (Found: $\mathrm{C}, 76.45$; $\mathrm{H}, 8.95 ; \mathrm{N}, 6.3 \% ; \mathrm{M}^{+}, 217.1468 . \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$ requires C, 77.01; H, 8.88; N, $6.45 \% ; M^{+}$, 217.1467).
(\pm)-6-Benzyl-6-azabicyclo[3.2.1]octan-3 3 -ol $1 \mathbf{g}$.—Method A from 1c. The ketone 1c ($50 \mathrm{mg}, 0.23 \mathrm{mmol}$) was dissolved in methanol $\left(5 \mathrm{~cm}^{3}\right)$ and cooled with stirring to $-78^{\circ} \mathrm{C}$. An excess of sodium borohydride (50 mg) was added and the mixture was stirred for 15 min at $-78^{\circ} \mathrm{C}$. The reaction was quenched at $-78^{\circ} \mathrm{C}$ by dropwise addition of $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ until bubbling ceased. The volume of the mixture was reduced to $c a .2 \mathrm{~cm}^{3}$ by rotary evaporation and the residue was partitioned between $20 \% \mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was extracted with three further portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined fractions were evaporated under reduced pressure to an oil. This was subjected to flash chromatography (silica, 94:5:1 $\mathrm{CHCl}_{3}{ }^{-}$ $\mathrm{MeOH}-\mathrm{NH}_{4} \mathrm{OH}$) to give $1 \mathrm{~g}(48 \mathrm{mg}, 96 \%$) as a clear oil: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.32(3 \mathrm{H}, \mathrm{m}), 1.90(3 \mathrm{H}, \mathrm{m}), 2.45(2 \mathrm{H}, \mathrm{m}), 2.72(2 \mathrm{H}$, d), $3.18(1 \mathrm{H}, \mathrm{t}), 3.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.15\left(1 \mathrm{H}, \mathrm{m}, W_{1} 23 \mathrm{~Hz}\right.$, CHOH) and 7.28 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) (Found: C, 76.7 ; H, 8.9 ; N, 6.4%; $\mathrm{M}^{+}, 217.1468 . \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{C}, 77.01 ; \mathrm{H}, 8.88 ; \mathrm{N}, 6.45 \%$; $M^{+}, 217.1467$).

Method B from $\mathbf{1 c} \cdot \mathrm{HCl}$. The ketone $\mathbf{1 c}(329 \mathrm{mg}, 1.53 \mathrm{mmol})$ was dissolved in 5% methanolic $\mathrm{HCl}\left(50 \mathrm{~cm}^{3}\right)$ and evaporated to dryness under reduced pressure and dried in vacuo. The $\mathbf{1 c} \cdot \mathrm{HCl}$ thus formed was dissolved in $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ and cooled in dry ice (acetone bath). A solution of $\mathrm{NABH}_{4}(110 \mathrm{mg}, 3$ $\mathrm{mmol})$ in $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ was added dropwise over a period of 10 min . The mixture was diluted with water $\left(10 \mathrm{~cm}^{3}\right)$, and the pH was brought to $1-2$ with dilute HCl , stirred for 5 min at room temperature, and basified with concentrated $\mathrm{NH}_{4} \mathrm{OH}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}\left(3 \times 20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was chromatographed on silica gel. Eluting with a solvent mixture ($90: 9: 2, \mathrm{CHCl}_{3}-$ $\left.\mathrm{MeOH}-\mathrm{NH}_{4} \mathrm{OH}\right)$ gave $1 \mathrm{~g}(0.26 \mathrm{~g}, 80 \%)$ as a clear oil. The physical characteristics were identical with the sample obtained in Method A.
(\pm)-6-Methyl-6-azabicyclo[3.2.1]octan-3ß-ol 1e.-The ketone 1b was reduced to the β-alcohol $\mathbf{1 e}$ with sodium borohydride in a manner similar to the preparation of the alcohol 1g (Method A). After chromatography (Alumina, Activity III, $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{NH}_{4} \mathrm{OH} 90: 9: 1$), the clear oil was converted into the hydrochloride salt. The hydrochloride salt was recrystallized from $\mathrm{MeOH}-\mathrm{Et}_{2} \mathrm{O}$, m.p. $234-236^{\circ} \mathrm{C}$ (lit., ${ }^{1}$ 235- $236{ }^{\circ} \mathrm{C}$). TLC and NMR spectra were identical with those described earlier. ${ }^{1}$

Acknowledgements

This research was supported by Grant AG-07418 from the National Institute on Aging.

References

1 F. I. Carroll, P. Abraham, K. Parham, R. C. Griffith, A Ahmad, M. M. Richard, F. N. Padilla, J. M. Witkin and P. C. Chiang, J. Med. Chem., 1987, 30, 805.
2 (a) R. Furstoss, P. Teissier and B. Waegell, J. Chem. Soc., Chem. Commun., 1970, 384; (b) R. Furstoss, G. Esposito, P. Teissier and B. Waegell, Bull. Soc. Chim. Fr., 1974, 2485.
3 W. J. Gensler, C. D. Gatsonis and Q. A. Ahmed, J. Org. Chem., 1968, 33, 2968.
4 P. Abraham, J. B. Pitner, Y. J. Joo, D. J. Triggle and F. I. Carroll, J. Chem. Soc., Chem. Commun., 1990, 984.

5 P. A. Bartlett and L. A. McQuaid, J. Am. Chem. Soc., 1984, 106, 7854.

6 T. Inukae and M. Kasai, J. Org. Chem., 1965, 30, 3567.
7 P. Mohr, N. Waespe-Sarcevic, C. Tamm, K. Gawronska and J. K. Yawronski, Helv. Chim, Acta, 1983, 66, 2501.
8 H. M. Schwartz, W. Wu, P. W. Marr and J. B. Jones, J. Am. Chem. Soc., 1978, 100, 5199.
9 T. Kuhn, C. Tamm, A. Riesen and M. Zehnder, Tetrahedron Lett., 1989, 30, 693.
10 S. F. Martin, M. S. Dappen, B. Dupre, C. J. Murphy and J. A. Colapret, J. Org. Chem., 1989, 54, 2209.
11 M. Tramontini, Synthesis, 1982, 605.
12 (a) H. O. House, H. C. Muller, C. G. Pitt and P. P. Wickham, J. Org. Chem., 1963, 28, 2407; (b) H. O. House and W. M. Bryant, J. Org. Chem., 1965, 30, 3634.
13 H. C. Brown and K. Ichikawa, J. Am. Chem. Soc., 1961, 83, 4372.
14 A. Hajos, Complex Hydrides and Related Reducing Agents in Organic Synthesis, Elsevier, 1979, p. 30.
15 S. S. White, Jr. and H. C. Kelly, J. Am. Chem. Soc., 1970, 92, 4203.
16 H. C. Kelly, M. B. Giusto and F. R. Marchelli, J. Am. Chem. Soc., 1964, 86, 3882.

Paper 1/00123J
Received 10th January 1991
Accepted 7th February 1991

[^0]: * The sample of $(1 S, 5 S)-6$ used had $[\alpha]_{D}^{23}-164.4^{\circ}\left(c 2.55, \mathrm{CHCl}_{3}\right)$. An $[\alpha]_{D}^{23}+179.2\left(c 9.76, \mathrm{CHCl}_{3}\right)$ is reported for a $90-95 \%$ optically pure sample of $(1 R, 5 R)-6$ (ref. 10).

